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Abstract

The current work attempts to investigate the dif-
ference in syntactic structure between adult di-
rected speech (ADS) and child directed speech
(CDS). In particular, how might the learning
from one speech type influence the syntactic
predictions the learner makes when compre-
hending novel input. To begin this investiga-
tion into syntactic expectations, I created an
unsupervised Hidden Markov Model part of
speech tagger. I then trained one model on CDS
from CHILDES corpora and another model on
ADS from the Switchboard Corpus. Prelimi-
nary results suggest that, as expected, someone
learning from CDS will find ADS samples less
probable than CDS samples. Discussion of lim-
itations, unsupervised POS tagging, and future
work can be found in Conclusion.

1 Introduction

As we comprehend language, we make predictions
about future input. In the framework of Informa-
tion Theory, this tendency for humans to make pre-
dictions has been well documented for upcoming
words and even predicting the next phoneme within
a word. Evidence also suggests that humans make
predictions about syntactic structure (Levy, 2008;
Ferreira and Qiu, 2021), but this phenomenon is
understudied in the Information Theory literature
in comparison to semantic predictions. This dispar-
ity, no doubt, comes from the additional modeling
difficulty in working with sentence structures as
opposed to words. But strong evidence for humans
engaging in structure prediction, and therefore mak-
ing it a worthwhile topic of study, comes from the
many studies investigating the garden path phe-
nomenon. When processing a garden path sentence
(e.g. “The horse raced past the barn fell”), we make
a prediction about the structure of the sentence and
the remaining words, but often in garden path sen-
tences our predictions are incorrect producing the

garden path phenomenon as we reparse the sen-
tence. Additionally, studying this topic may have
practical modeling advantages as some evidence
suggests that separating the semantic and syntactic
surprisal produces better performance in predicting
reading time (Roark et al., 2009).

In the current work, I will be investigating pre-
dictions about syntactic structure with the tools
from the Part of Speech (POS) tagging literature.
Work in the POS tagging literature often frame
the task as predicting the next POS given the cur-
rent label, offering an interesting parallel to the
topic of predicting syntactic structure. Specifically,
I am interested in investigating what predictions
about syntactic structure humans can learn from
language input and how these predictions might
change from adult-directed speech (ADS) to child-
directed speech (CDS). Past syntactic analyses of
CDS suggests that CDS may be less complex and
more repetitive than ADS (for a review see Soder-
strom 2007), but analyzing differences between
CDS and ADS in terms of their expectations of
syntactic categories can further our understanding
of how CDS differs from ADS and the patterns
that children can extract from their input. This
research can also make predictions about differ-
ences in performance between children and adults
in comprehension tasks.

2 Background

Part of Speech tagging is assigning a syntactic label
to each word in some text. This process is tradi-
tionally a task of disambiguation where the model
is given a dictionary to label most words determin-
istically but selects a label for some words that are
syntactically ambiguous. Resolving the ambiguity
is achieved using the context of the word.

A popular model for POS tagging is the Hidden
Markov Model (HMM). A Markov Chain models



the probability of a sequence of observed objects
using the simplifying assumption that the proba-
bility of the current object only depends on the
previous object in the chain. An HMM is an exten-
sion of the Markov Model with the assumption that
the sequence of observed states can be explained
by some unobserved structure. Figure 1 illustrates
how the observed states, w, are a result of the unob-
served hidden states, y. We can see how this model
naturally applies to the task of POS tagging where
the observed states are words and the unobserved
states are POS tags.

Figure 1: Graphical representation of an HMM taken from
Eisenstein (2019).

The main components of this POS tagging imple-
mentation of HMM are the transition probabilities
from label to label and the emission probabilities
of a word given the label (Jurafsky and Martin,
2009). Given a tagged corpus, these probabilities
can be calculated directly by counting. For the tran-
sition probabilities, one counts for the the relevant
instances for a tag, t:

p(ti|ti−1) =
C(ti−1, ti)

C(ti−1)

For the emission probabilities, one counts the rele-
vant instances of a tag, t, and word, w:

p(wi|ti) =
C(ti, wi)

C(ti)

We can see that this POS tagging method is highly
supervised as we are using a corpus of gold stan-
dard labeling and a fixed set of POS tags. In inves-
tigating how humans process language, supervised
learning is preferred. Additionally, unsupervised
tagging has a practical modeling advantage in that
the unsupervised model allows us to collapse POS
labels into a standard set to use text from multi-
ple corpora. The seminal work on unsupervised
POS labeling comes from Goldwater and Griffiths
(2007).

In Goldwater and Griffiths (2007), the authors
formulate a Bayesian Trigram HMM POS tagger.

In this model, the tags for a corpus of text is initial-
ized at random, and the MAP tag sequence is found
by iteratively resampling the tags to maximize the
probability of the sequence (where the transition
and emission probabilities follow a Dirichlet distri-
bution). Much of their results report performance
of the model run on fully tagged corpora (therefore
giving the model dictionary knowledge), but the
authors also manipulated the amount of dictionary
knowledge provided. To do this, they collapsed the
tags from the corpus into 17 categories and only
gave the model access to the labeling of the most
frequent words (where the frequency cut-off is be-
ing manipulated). Measuring accuracy for the fully
unsupervised model (no dictionary knowledge) is
difficult, but the model with the least dictionary
information correctly tagged 49.7% of the words
(random condition achieved 38.6% accuracy) illus-
trating the difficulty of unsupervised POS tagging.

3 Model

For the current project, I created an unsupervised
POS tagging model trained on ADS and one trained
on CDS. For samples of ADS, I used the Switch-
board corpus (Godfrey et al., 1992) which complies
thousands of phone conversations between adults.
For samples of CDS, I used the CHILDES collec-
tion of corpora (MacWhinney, 2014) which com-
pile speech that caregivers directed at their children.
Specifically, I used the Valian corpus.

For the training, I extracted a selection of text
(5,000 words) from each corpora and then divided
it into 500 chunks with 10 words in each chunk.
To create an HMM that could be tested on both
CDS and ADS chunks, the vocabulary consisted
of the unique words in both sets. Following Gold-
water and Griffiths (2007), the states of my HMM
consisted of 17 tags. I then randomly initialized,
using a normal distribution sampler, the emission
(length states X length vocabulary) and transition
(length states X length of states) matrices. And to
complete the HMM, I specified α to be the first row
in the transition matrix (T) and ω to be the last row
in T.

I then created two models from this HMM, one
trained on ADS and one trained on CDS. To train
the model on the relevant text, I wanted to adjust
the emission (E) and transition (T) matrices to max-
imize the inside probability of the text. The inside
probability is calculated by summing over all pos-
sible paths of our labels q:
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To calculate the inside probability, I used the
following formula which includes a term, f(q, t),
that is calculated recursively:
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f (q,K + 1) = pω(q).

To maximize the inside probability for given text,
I performed gradient descent on E and T using Py-
Torch. I could not run gradient descent on large text
samples as the inside probability approached 0 as
the length increased. So I decided to divide the text
into chunks and iteratively apply gradient descent
in which the output E and T matrices were fed for-
ward to the application of gradient descent on the
next text chunk. To achieve this, I decided to use
fewer gradient steps (20) for each chunk but with
a relatively large learning rate (0.05) in order to
train on the 500 chunks. In piloting, I noticed that
the model was achieving large inside probabilities
by simply making E and T arbitrarily large, so the
E and T were passed through a softmax function
when calculating inside probability to constrain this
behavior. Following this procedure, I trained one
model on the ADS chunks and the other model on
the CDS chunks.

As stated previously, estimating accuracy for un-
supervised POS tagging is difficult because there
is not an straightforward way to align the set of
model tags with the set of gold standard tags. But
we can analyze E and T to get a better understand-
ing of the state of the model after training. First,
for the ADS model, I wanted to see if there was any
obvious clustering that could be extracted from the
E output. To do this, I found the 50 most probable
word emissions for each category. Using original
tags from Switchboard, I found the percentage of
these 50 words that were labelled as determiner,
verb, or noun (the most common labels). This is
plotted in figure 2.

Because these are the most common words in
the input, it is reasonable to see that the three cate-
gories are represented in all the model categories

Figure 2: For each category in the ADS model, I found
the 50 most probable word emissions. Of these 50, this plot
illustrates the percent of words labeled as determiner, verb, or
noun in the Switchboard corpus.

as opposed to seeing all nouns in one and all the
determiners in another. More fine grained analyses
of the less common tags may help clarify what kind
of clustering this model prefers.

We can also visualize the T output to understand
the transition preferences in the ADS model (seen
in figure 3). Although these transitions are not re-
flective of transitions between parts of speech in
human language, if the task is to maximize the in-
side probability, you might prefer to stay in one
state that will eventually be your end state. Interest-
ingly, this preferred state, 12, is the one that has a
noticeably different distribution in figure 2. Maybe
most of the legwork is done in state 12 such that
the emissions from state 12 better reflect the ob-
served distribution of the text. In the future, I could
vary the number of categories to better understand
this model’s transition preferences, and I could try
to force a preference for multiple states to better
reflect human language.

Figure 3: The probability of a transition from state on Y axis
to state on X axis for the ADS model.

Now looking at the CDS model. I created similar
visualizations, but used the Valian corpus labels for
the category visualization.

We can again see similar performance in the T



Figure 4: For each category in the CDS model, I found
the 50 most probable word emissions. Of these 50, this plot
illustrates the percent of words labeled as determiner, verb, or
noun in the CHILDES corpus (Valian).

Figure 5: The probability of a transition from state on Y axis
to state on X axis for the CDS model.

matrix as there is one state that is highly preferred
(seen in figure 5). Looking at the categorization
visual (4, we still do not see obvious clustering of
our three categories, but we see the same interest-
ing pattern of the highly preferred state having a
noticeably different shape. It seems that all three
common gold standard categories are underrepre-
sented in the preferred model category suggesting
again that this state better reflects the distribution
of the text.

4 Results

Now returning to the main interest, we want to see
how these two models perform on unseen text from
the other text type. Taking another text sample
(1,000 words) from each corpora, I created a set of
unseen ADS text and a set of unseen CDS text (100
chunks of 10 words). The log inside probabilities
are plotted in 6.

We can see that when the text from the opposite
text type (ADS or CDS) from the model is judged
as less probable than the text from the same text
type. For example, the CDS model judges the CDS
testing text to be more probable than the ADS test-

Figure 6: The log inside probability when CDS model tested
on both text types (left) and when ADS model tested on both
text types (right).

ing text which was expected. Interestingly, there
does not seem to be much of a difference between
the two drop-offs from familiar text to unfamiliar
text. Given the evidence that CDS is syntactically
less complex, one might expect the ADS model to
perform similarly on both text types.

In interpreting these results, it is important to
note that there are many factors relevant in compar-
isons across corpora. We see a noticeable differ-
ence in each model’s performance on CDS versus
ADS text, but this result could be a product of dif-
ferences between corpora as opposed to differences
between the structure of ADS and and the structure
of CDS more generally. To increase confidence, I
would need to compare across other ADS and CDS
corpora.

5 Conclusion

To start, there are many limitations to the current
study. First, the text trained on was relatively small
(5,000 in current study compared to 24,000 in Gold-
water and Griffiths 2007). Second, in order to
achieve the goal of better understanding the struc-
ture in ADS and CDS that might lead to differ-
ent syntactic predictions, I should have accompa-
nied my model with one in the literature (i.e. the
model created by Goldwater and Griffiths 2007). I
don’t have a great reason for not implementing the
Goldwater-Griffiths (GG) model other than time
constraints. But it is still informative to reflect
on the differences between the unsupervised ap-
proaches. One obvious downside to my model in
comparison to the GG model is that it isn’t maxi-
mizing the string of tags for a large body of text.
It seems that accurate POS tagging will require
some sampling as seen in the GG model Gibbs



sampler where the tags are iteratively resampled
to find the MAP tag sequence of the whole text.
One potential advantage of my model is that it in-
crementally takes in input and adjusts the E and
T matrices which may mirror the incrementally of
language processing, but I would need to perform
more analyses to determine how drastically the E
and T matrices are tuned for each text sample. One
way to maximize the inside probability on a more
global scale using my model is to train on small
text windows and slowly increase the size.

Despite these limitations, the current work fur-
ther highlights the difficulties in unsupervised POS
tagging in terms of implementation and estimating
accuracy. It also, rather fortuitously, contributes
a model that incrementally learns about the hid-
den labels influencing text sequences. From the
preliminary results reported here, we expect to see
differences between how children and adults form
predictions about upcoming syntactic categories.
Framing the phenomenon of predicting syntactic
structure in the context of POS tagging, allows us
to make predictions about someone’s expectation
of the following syntactic structure which may con-
tribute to reading times in language comprehension
tasks. To extend this modelling work, future work
can test a wider range of corpora and POS tagging
models to better understand how humans form syn-
tactic predictions from their input.
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